Quantifying the synergy of environmental stressors on human mortality

Theo Economou1, Daphne Parliari2, Jonilda Kushta4 and Jos Lelieveld1-3

1. Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
2. Laboratory of Atmospheric Physics, Aristotle University, Thessaloniki, Greece
3. Max Planck Institute for Chemistry, Mainz, Germany
4. Sirius

The 2023 EMS Annual Meeting of the European Meteorological Society
03-08 September 2023, Bratislava, Slovakia

Introduction

- Understanding the effect of environmental stressors on human mortality can be done using statistical modelling of relevant data.
- For example, daily mortality counts M_t (for day t) and max daily apparent temperature T_t.
- To allow for the aggregated effect of environmental stress over a period of time, regression models called Distributed Lag Models (DLMs) have been proposed:

$$M_t = \text{Poisson}(\mu_t)$$

$$\log(\mu_t) = \alpha + \beta_1 T_t + \beta_2 T_{t-1} + \beta_3 T_{t-2} + \ldots + \beta_r T_{t-r}$$

(1)

- Where the coefficients β_r are the contribution to mean mortality count μ_t, from temperature T_{t-r} on day $t - r$ (it being “today”). Extension to Distributed Lag Non-Linear Models or DLNMs (Gasparrini, 2010) allows a non-linear effect from T_{t-r}:

$$\log(\mu_t) = \alpha + f(T_{t,0}) + f(T_{t,1}) + f(T_{t,2}) + \ldots + f(T_{t,r}).$$

(2)

- The expression $f(T_{t,r})$ is interpreted as the relative risk (RR) interpreted as:
 - $RR > 1$ means that mortality risk is equal to the mean mortality count, e^α;
 - $RR < 1$ or $RR < 0$ means higher or lower risk than average respectively.

Methodology

- Implementing DLMs as Generalized Additive Models or GAMs (Wood, 2011, 2017) enables optimal estimation and straightforward interpretation. Figure 1 shows the RR for the city of Thessaloniki, Greece, based on observational data in the period 2006–2016 (mortality counts and weather station observations).

- Apparent temperature quantifies the stress from both temperature and humidity (see Figure 2), so the peak around 40°C for lags of 0-5 days indicates increased mortality risk during extreme hot-and-humid periods.

- GAMs readily allow inclusion of other stressors such as air pollution, say A_t, by extending the function $f(T_{t,r})$ to $f(T_{t,r}, A_{t-r})$ in Equation (2).

- For A_t being PM10 (coarse particulate matter which if >40 is considered a health risk), we now have different temperature-lag surfaces for different PM10 values (Figure 3). For Thessaloniki, the increased risk at hot-and-humid conditions is clearly exacerbated by high PM10 levels.

- To better understand the synergy between exposures, the lag dimension can be “integrated out” by summing the risk along lags, for different exposure combinations.

- Figure 4 shows the corresponding cumulative risk surface for apparent temperature and particulate matter (PM10) for Thessaloniki, where hot-and-humid weather combined with high PM10 results in enhanced risk.

- To interpret the estimated risk in terms of observed mortality we compute the Attributable Fraction – defined as the proportion of death counts that are attributed to the exposures.

- Figure 5 shows the Attributable Fraction for 3 pollutants: PM10, Ozone (O3) and Nitrogen Dioxide (NO2).

- We have also quantified the attributable mortality fraction by cause-of-death (cardiovascular disease (CVD), respiratory disease (RD) and elderly mortality (>65 years)). Figure 6 shows this for apparent temperature being between the 75th and 99th sample quantile, for increasing levels of the 3 pollutants from Figure 5.

Conclusions

- This is the first time that the lagged effects of heat-stress and air pollution synergy was studied explicitly at daily temporal resolution.
- Our study confirms the hypothesis that mortality risk due to heat-stress is compounded by air pollution – for the city of Thessaloniki, one of the most polluted cities in Europe.
- During hot-and-humid conditions: respiratory disease mortality is exacerbated for high Ozone and NO2 pollution, while elderly mortality is heightened by high PM10 levels.
- Further analysis is needed to also allow for the interactions between pollutants.

References